Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: site-directed mutagenesis and kinetic studies.
نویسندگان
چکیده
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
منابع مشابه
Characterization of human iodothyronine sulfotransferases.
Sulfation is an important pathway of thyroid hormone metabolism that facilitates the degradation of the hormone by the type I iodothyronine deiodinase, but little is known about which human sulfotransferase isoenzymes are involved. We have investigated the sulfation of the prohormone T4, the active hormone T3, and the metabolites rT3 and 3,3'-diiodothyronine (3,3'-T2) by human liver and kidney ...
متن کاملExpression and localization of cytosolic sulfotransferase (SULT) 1A1 and SULT1A3 in normal human brain.
Cytosolic sulfotransferases (SULTs) are a family of Phase II drug-metabolizing enzymes that catalyze the transfer of a sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to endogenous and xenobiotic compounds. Several SULT isoform messages have been detected in the human brain; however, protein expression patterns have not been characterized. Immunoblot analysis of the SULT1A1 and 1A3 i...
متن کاملThe Molecular Basis for the Broad Substrate Specificity of Human Sulfotransferase 1A1
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specifi...
متن کاملTetrahydrobiopterin regulates monoamine neurotransmitter sulfonation.
Monoamine neurotransmitters are among the hundreds of signaling small molecules whose target interactions are switched "on" and "off" via transfer of the sulfuryl-moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and amines of their scaffolds. These transfer reactions are catalyzed by a small family of broad-specificity enzymes-the human cytosolic sulfotransferase...
متن کاملA single amino acid, glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3.
Sulfation, catalyzed by members of the sulfotransferase (SULT) superfamily, exerts considerable influence over the biological activity of numerous endogenous and xenobiotic chemicals. In humans, catecholamines such as dopamine are extensively sulfated, and a SULT isoform (SULT1A3 or the monoamine-sulfating form of phenolsulfotransferase) has evolved with considerable selectivity for dopamine an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 38 32 شماره
صفحات -
تاریخ انتشار 1999